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ABSTRACT: Despite many decades of study, scientists
still puzzle over the process of insight. By what mecha-
nism does a person experience that “Aha!” moment,
when sudden clarity emerges from a tangled web of
thoughts and ideas? This research integrates psycho-
logical work on insight with graph theoretic work on
“small-world” phenomenon, to construct a theory that
explains how insight occurs, how it is similar to and
different from more typical learning processes, and
why it yields an affective response in the individual. 1
propose that cognitive insight occurs when an atypical
association, forged through random recombination or
directed search, results in a “shortcut” in an individ-
ual’s network of representations. This causes a rapid
decrease in path length, reorients the individual’s un-
derstanding of the relationships within and among the
affected representations, and can prompt a cascade of
other connections. This result is demonstrated by ap-
plying graph theoretical analysis to network transla-
tions of commonly used insight problems.

The phenomenon of insight, that sudden “Aha!” one
experiences when the solution to a problem one has
struggled with is suddenly and unexpectedly revealed,
has intrigued scholars for more than a century. Re-
searchers have attempted to study insight through labo-
ratory studies (e.g., Davidson, 1986, 1995; Davidson
& Sternberg, 1986; Duncker, 1945; Finke, 1995;
Kaplan & Simon, 1990; Siefert, Meyer, Davidson,
Patalano, & Yaniv, 1995; Weisberg, 1986), and de-
tailed examination of historical accounts of some of
the discoveries of great minds such as Charles Darwin,
Albert  Einstein, and Sir Isaac  Newton
(Csikszentmihalyi & Sawyer, 1995; Dunbar, 1995;
Gruber, 1995; Ippolito & Tweney, 1995; Isaak & Just,
1995; Simonton, 1995, 1999a, 1999b). Yet despite
such avid attention, the underlying mechanism of in-

sight remains elusive. Though there are various expla-
nations of what insight is, or how it might occur, many
cognitive psychologists continue to struggle with ques-
tions about insight (Davidson, 1986; Davidson &
Sternberg, 1984; Kaplan & Simon, 1990; Lockhart,
Lamon, & Gick, 1988; Martindale, 1995; Mayer, 1995;
Metcalfe, 1986a, 1986b; Metcalfe & Wiebe, 1987;
Montgomery, 1988; Simonton, 1999a, 1999b;
Wertheimer, 1985). As Metcalfe (1995, p. x) stated,
“The persistent lack of a mechanism for insight, linked
with the charge that the notion of insight is somehow
supernatural, has shackled researchers who would ex-
plore this most important of cognitive processes. ...
We do not yet understand insight.”

Interest in insight stems not only from the fact that it
is a rather peculiar cognitive event, but also from the
fact that insight may be one of the most powerful
routes toward advancing human understanding avail-
able to us. Hebb argued that insight is at the core of ani-
mal and human intelligence (Hebb, 1949; Mayer,
1995). Though insight enables us to solve minor prob-
lems in our daily lives, it has also produced some of the
most influential scientific breakthroughs in history.
Harnessing its power has the potential to rapidly accel-
erate the pace at which science bounds forward.

This research builds on previous work on insight by
integrating it with work done in graph theory on an-
other peculiar phenomenon—that of “small worlds.”
Small-world networks are those in which the average
path length between any two nodes is surprisingly
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short given the network’s size, sparseness of connec-
tions, and clustering (Watts & Strogatz, 1998).
Small-world properties cause a sharp and sudden phase
transition in the connectivity of a network, radically al-
tering its dynamics. In this article, I propose that
small-world network properties have profound impli-
cations for understanding insight. By integrating re-
search on networks, graph theory, and cognition, I
build an explanatory theory that explains how insight
occurs, how it is similar to and different from more typ-
ical learning processes, and why it is often accompa-
nied by an affective response. From the perspective of
this theory, most of the alternative views of insight that
have been put forth over the last century are comple-
mentary pieces of the same puzzle and thus it should
not be surprising that empirical evidence has been
found for multiple views. This theory is also shown to
be consistent with evidence from prior studies of in-
sight, with emerging research on semantic networks,
and with the physiological structure of neural net-
works. The theory also suggests explanations for why
some people might be more insightful than others.

This article first reviews the previous research on
insight, including definitions, requirements, and
widely cited explanations of the process of insight. It
then demonstrates that, by recasting existing explana-
tions of insight into a simple network approach using
nodes and links, prior competing explanations can be
integrated into a single, unified view. Next, the article
describes key results from work in graph theory on
small-world networks, and how these findings are re-
lated to key concepts in insight. By applying the
small-world findings from graph theory to the explana-
tions of insight from psychology, the article shows that
the moment of insight may be the formation of new
small-world network properties in the mind. In so do-
ing, the article argues that the revolutionary nature of
insight is due to the dramatic decrease in path length in
the network of connected representations—a mathe-
matically verifiable property of small-world networks.
The final section discusses implications and potential
extensions of this work.

Insight: Definitions and Alternative Views
Insight is typically defined as a process whereby an

individual moves suddenly from a state of not knowing
how to solve a problem to a state of knowing how to

solve it (Mayer, 1992, 1995). For instance, Kohler
(1925, p. 217) described insightful problem solving as
the arrival of “complete methods of solution™ that oc-
cur suddenly, and had never been formerly practiced.
Insight may involve the immediate knowing of some-
thing without the conscious use of reasoning (Siefert et
al, 1995). Many scholars have argued that the period of
struggling with the problem without obtaining an an-
swer is as important as the sudden realization of a solu-
tion. For example, in Hebb’s (1949, p. 160) definition
of insight:

The task must be neither so easy that the animal solves the
problem at once, thus not allowing one to analyze the solu-
tion; nor so hard that the animal fails to solve it except by rote
learning in a long series of trials. With a problem of such bor-
derline difficulty, the solution may appear out of a blue sky.
There is a period first of fruitless effort in one direction, or
perhaps a series of attempted solutions. Then suddenly there
is a compete change in the direction of effort, and a clean-cut
solution of the task. This then is the first criterion of the oc-
currence of insight. The behavior cannot be described as a
gradual accretion of learning; it is evident that something has
happened in the animal at the moment of solution. (What
happens is another matter).

This view is echoed in the definition provided in
Siefert et al. (1995):

To be referred to as insightful, the processes must not occur to
most people immediately on presentation of the problem.
The processes must seem to occur abruptly when they do oc-
cur and, once they have occurred, must result in a change in
the solver’s mental representation of the problem. (p. 129)

This view is also consistent with Perkins’s (1995) de-
scription of insight as an example of a generative
breakthrough event—a type of cognitive innovation
that is similar to the sudden innovations that may occur
in any kind of creative system.

The “Aha!”

One of the features distinguishing insight from
more routine problem solving is the “Aha!” moment
that a learner experiences upon realization of the solu-
tion. Gick and Lockart (1995) proposed that the “Aha!”
is an affective response that arises because of the (a)
unexpectedness of the solution (because the represen-
tation is so different from previous representations at-
tempted) and (b) suddenness at which the correct rep-
resentation leads to fruitful solution. The solution not
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only appears quickly, but also appears disconnected
from previous solution attempts (Dominowski &
Dallob, 1995).

The suddenness and disconnectedness at which a
learner arrives at a solution has caused many people to
view insight as an almost supernatural event. Some in-
dividuals appeared to be particularly gifted, with
minds that gave rise to insights that could not be repro-
duced in others, nor scientifically explained. However,
such a view is not very amenable to scientific study,
and did not rest well with many researchers—particu-
larly the behaviorists and the associationists (Mayer,
1995). Those camps tended to argue that insight was
simply an extension of normal learning processes
(Davidson, 1995; Perkins, 1981; Weisberg, 1986,
1992; Weisberg & Alba, 1982). Siefert et al.’s (1995)
perspective was that, though there is evidence for in-
sightful learning that is quite different from typical
learning in that it involves quantum leaps of inspiration
(and the individual may have had no prior expectation
of the impending solution), such a process may arrive
through known information-processing phases, and
may thus still be amenable to scientific study and ex-
planation. This perspective is the one most consistent
with the theory advanced here.

The Benefits and Costs of Deep Knowledge
Reservoirs

Many studies have suggested that dense clusters of
domain-specific knowledge may be a neces-
sary-but-insufficient condition for insight. Simonton
argued that insight first requires preparation within a
discipline and notes that the most insightful people
have first built up huge reservoirs of discipline-relevant
information (Simonton, 1999a, 1999b). Simon and
Chase even quantified this expertise by studying chess
grand masters and other experts, concluding that indi-
viduals need approximately 50,000 “chunks” of richly
connected information prior to making a fruitful dis-
covery (Simon & Chase, 1973). Other authors have ob-
served that individuals typically require at least a de-
cade of intense study in a particular domain of
knowledge prior to making a significant contribution
in that domain (Gardner, 1993; Hayes, 1989;
Simonton, 1999a, 1999b). The more knowledge an in-
dividual has in a particular domain, the more likely
they are to understand the nature of the relationships
between different ideas. As associations within the do-

main are challenged or reinforced over time, the more
accurate the pattern of associations should become,
and the more efficient the individual should be in
searching for a solution among them (Dosi, 1988;
Harlow, 1959).

An individual’s degree of prior experience in a do-
main, however, can also inhibit creative problem solv-
ing (Wertheimer, 1945/1959). Individuals who are
highly specialized within a domain are prone to
“einstellung” or functional fixedness. Functional
fixedness refers to a situation whereby an individual
can only think of using an object for its most common
use (Duncker, 1945). This is closely related to Luchins’
(1942) einstellung, whereby learners who have previ-
ously solved a problem a particular way will form a
problem-solving set that mechanizes their problem
solving, constraining them from developing creative
solutions (Mayer, 1995). Both are examples of autom-
atized thinking. Many forms of learning may become
automatized such that, when faced with a particular sit-
uation, the learner automatically recalls a representa-
tion, and it is difficult not to do so (Gick & Lockart,
1995). When an individual has well-reinforced expec-
tations about the direction a search path should take, it
constrains their ability to explore different possibili-
ties, and may prevent them from generating
“preinventive forms” with a more natural or universal
structure (Finke, 1995, p. 262). Similarly, an individual
that is deeply immersed in the established orthodoxy of
a field of study may find their creativity stifled by ex-
isting paradigms and institutional pressures to conform
(McLaughlin, 2001). This is also argued by Simonton,
who pointed out that being too highly specialized can
inhibit cognitive insight: “Too often, persons fail to
make significant insights because they exclude whole
domains of elements from entering into the
combinative hopper. Yet what appears logically irrele-
vant may actually provide the missing piece of the puz-
zle” (1995, p. 473). Extensive training in a particular
field can thus impede cognitive insight (notably, both
Einstein and Piaget claimed that formal schooling de-
tracted from their intellectual development; Feldman,
1999). For these reasons, it has often been argued that
marginal intellectuals (those who may participate in
multiple intellectual domains but are central to none)
are more likely to introduce creative breakthroughs
than well-established experts in a domain (Ben-David
& Collins, 1966; Dogan & Pahre, 1990; Martindale,
1995, p. 252; McLaughlin, 2001). The benefits and
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costs of having extensive knowledge and experience in
a domain also suggest that there may be a curvilinear
relationship between experience and creativity, and
that the effect may be a function of an individual’s ten-
dency to rely on prior experience (e.g., Martinsen,
1994, 1995; Sternberg, 1988).

In a related line of research, scholars have studied
cognition as a recombinant search process. This work
suggests that a highly ordered search through a
well-defined and local space of solutions may be more
likely to result in incremental solutions than creative
breakthroughs. Forging connections between two
ideas that were already perceived as closely related, or
finding a solution in a “homing space” wherein many
clues lead to its almost inevitable discovery, may not
result in the affective response characterizing insight
(Perkins, 1995). Incremental progress on a problem
may conform to the learner’s expectations, and not
elicit any sense of surprise or prompt any significant
restructuring of existing representations. By contrast,
when connections are made between ideas that had
seemed unrelated or incongruent, the connection may
be unexpected, and it may prompt the individual to re-
arrange other existing associations to one or more of
the ideas.

The Role of Unexpected Connections

Several domains of research have suggested (ex-
plicitly or implicitly) that insight arises from an unex-
pected connection between disparate mental represen-
tations. At least five prominent hypotheses about the
process of insight incorporate unexpected connections
within or across representations as one of the underly-
ing mechanisms: (a) completing a schema, (b) reorga-
nizing visual information, (c) overcoming a mental
block, (d) finding a problem analog, and (e) random re-
combination. All of these explanations turn out to be
highly congruent when viewed from a network per-
spective. I first briefly describe each of the explana-
tions, and then propose a unified synthesis.

1. Completing a schema. According to Mayer
(1995), one of the earliest views of insight came from
Otto Selz, who proposed that creative problem solving
occurs when an individual figures out how the givens
and goal of a problem fit together in a coherent struc-
ture. A problem may be a coherent set of information
with a gap. To solve the problem, the individual must

find a way to fill the gap in a manner that completes the
structure (Humphrey, 1963; Mayer, 1995). This view
contrasted with traditional associationism views be-
cause it posited that it was not the strength of associa-
tion between ideas that lead learners to a particular so-
lution, but rather the degree to which an idea fit the
learner’s schema of the requirements of the problem.
This is consistent with Siefert et al.’s (1995) hypothesis
that if a learner has stored a stable partial mental repre-
sentation of an unsolved problem, an accidental en-
counter with external stimuli that provides relevant in-
formation may complete it in a way that is sudden and
unexpected. Siefert et al. provided an illustrative exam-
ple, modified from Mosler (1977). Two men walking
through the desert discover a third man, lying on the
sand, dead. The dead man has a small pack that con-
tains fresh food and water, a larger pack on his back,
and a large ring on his index finger. Puzzled about the
cause of his death, the two men proceed onward. Later,
one of the men accidentally drops his handkerchief
while mopping his brow, and as it flutters to the earth
he suddenly realizes how the man had probably died:
His parachute had broken, and he had plummeted to
the ground. This example demonstrates how a partial
representation with a gap (a dead man with a pack,
food, water, and a large ring) may be suddenly filled in
a way that completes the coherent structure of the rep-
resentation (the large pack contained a parachute, and
the ring was from its pull cord).

2. Reorganizing visual information (or ‘“refor-
mulating a problem”). The Gestalt theory of per-
ception posited that insight occurs when a learner
looks at a problem in new way. A problem solver men-
tally redefines the givens or the goal of a problem
(Mayer, 1995) or reorganizes the visual representation
of the problem in such a manner that it leads to a sud-
den view of a solution (Duncker, 1945). A good exam-
ple of this is demonstrated with the following problem.
Students are asked to calculate the area contained in a
shape resembling a puzzle piece (see Figure 1). Many
participants struggle with finding a way to calculate the
size of the rectangular portion, subtracting the circular
missing portion, adding the protruding circular por-
tion, and trying to account for the slight overlap be-
tween the circular portions and the rectangular por-
tions. Other participants are able to solve the problem
much more simply by reorganizing the problem. By re-
alizing that the protruding portion fits into the concave
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ONNG

a) Original visualization of problem

O

b) Reorganized visualization of problem

Figure 1. Area of puzzle problem.

portion of the rectangle, the participants are able to re-
formulate the problem into a simple calculation of the
area of a rectangle (Mayer, 1977).

3. Overcoming a mental block. Another Ges-
talt view posed that insight occurs when individuals
overcome functional fixedness or einstellung
(Duncker, 1945; Luchins, 1942). As discussed previ-
ously, experience with solving a problem in a particu-
lar way can constrain individuals from coming up with
new solutions (Mayer, 1995). Insight occurs when the
learner overcomes this fixedness. For example,
Wicker, Weinstein, Yelich, and Brooks (1978) found
that participants who were directed to reformulate their
initial view of a problem to avoid unnecessary assump-
tions about it were more likely to solve the problem
successfully. Research has also shown that pretest
tasks can be used to decrease functional fixedness in an
individual. For example, Birch (1945) found that if
participants are first encouraged to explore the general
uses of a particular item, they will more quickly find
solutions to problems that require the participant to use
the item in novel ways. Birch created an experiment
wherein some food was placed beyond the reach of an
ape in a cage. The ape in the cage was given a hoe to
“rake” the food into reach. Birch found that, if apes
were given a few days to play with sticks prior to the
experiment, they were much more likely to solve the
problem. In playing with the sticks, the apes had ex-
plored many possible functions of stick-type objects,
making such functions more readily available to them
when given the hoe.

4. Finding a problem analog. Several research-
ers have suggested that insight occurs when an indi-
vidual applies the structural organization of one prob-
lem to another problem (Gentner & Gentner, 1983;
Gick & Holyoak, 1980; Holyoak, 1984; Wertheimer,

1945/1959). Numerous studies have demonstrated
that adults, children, and even chimpanzees are often
able to abstract structural elements common to two
problems, and thus are able to use the solution to one
problem to provide the solution to another problem,
even if the specific features of the problem appear
quite different (Bassok, 2001; Dunbar, 2001; Gentner,
1988; Goswami, 2001; Holyoak, 1984; Oden,
Thompson, & Premack, 2001). For example, in a
well-known insight experiment, participants solve a
radiation problem (“how can a sufficient intensity of
rays be used to destroy a tumor without damaging
healthy tissue?”) by transferring the solution from a
structurally similar military problem (“how can a suf-
ficient number of army troops be used to capture a
fortress if the roads to the fortress are narrow?”). The
participants solve the problem (split up the rays/army
into smaller units and send them to the tumor/fortress
by multiple paths) by mapping the military solution
to the tumor problem (Duncker, 1945; Gick &
Holyoak, 1980). Such an analogical transfer is fre-
quently depicted as the formation of new connections
between the semantic network representations of the
two problems. By priming individuals to forge such
otherwise unlikely connections between an army and
radiation, experimenters stimulate the participants to
generate an insightful solution.!

5. The role of random recombination. Recently
several researchers have argued that insight often oc-
curs when the individual’s mind is allowed to engage in
a subconscious random recombination of ideas that ul-
timately yields a fruitful synthesis of ideas (Siefert et

IThere is a considerable body of work on the role of analogy in
cognition and decision making that is beyond the scope of this arti-
cle. For more comprehensive reviews, see Gentner, Holyoak, and
Kokinov (2001), Gentner and Stevens (1983), Holyoak and Thagard
(1995), and Vosniadou and Ortony (1989).
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al., 1995; Simonton, 1995, 1999a, 1999b). For exam-
ple, Simonton (1995, 1999a, 1999b) pointed out that
many of the most famous scientific breakthroughs oc-
curred through a free associative process (what Freud-
ians might call “primary process thinking”) whereby
an individual generates many unusual combinations
between different bodies of knowledge possessed by
the individual and subjects that set to a screening pro-
cess of selective retention, keeping only the best varia-
tions (much like Darwinian evolution). This view ech-
oes the eloquent description by William James (1890):

Instead of thoughts of concrete things patiently following
one another in a beaten track of habitual suggestion, we have
the most abrupt cross-cuts and transitions from one idea to
another, the most rarefied abstractions and discriminations,
the most unheard of combination of elements, the subtlest as-
sociations of analogy; in a word, we seem suddenly intro-
duced into a seething cauldron of ideas, where everything is
fizzling and bobbling about a state of bewildering activity,
where partnerships can be joined or loosened in an instant,
treadmill routine is unknown, and the unexpected seems only
law. (p. 456)

Unlike Simon (1973), who argued that insight
arises by a process that is intrinsically logical,
whereby an individual makes an ordered search
through possible representations, Simonton (1999a)
argued that the role of chance is crucial in insightful
discovery. He noted that if a problem is novel and
complex, the number of possible representations ex-
pands exponentially, and if there is no precedent for
its solution, there may be little basis on which to as-
sign one algorithm a greater probability of solution
than another. Thus individuals may find themselves
blindly searching through an immense range of possi-
bilities, even though they may be largely unaware that
they are doing so. This random recombination ap-
pears consistent with illustrative anecdotes of some of
the great discoveries of the past. For instance, in an
oft-repeated quote, Poincaré (1921, p. 387) described
how he came upon the idea of Fuchsian functions af-
ter having drunk coffee too late in the evening: “Ideas
rose in crowds; I felt them collide until pairs inter-
locked, so to speak, making a stable combination. By
the next morning I had established the existence of a
class of Fuchsian functions” (in Simonton, 1995, p.
469).

Synthesis of Views Within a Network
Perspective

Though each of the views described proposes a dif-
ferent mechanism for insight, modeling them using a
network approach reveals that the basic processes un-
derlying them are fundamentally the same. Using sim-
ple network diagrams to illustrate the first four expla-
nations, it is possible to show that each perspective
involves the addition or change of nodes or links, and
the fifth explanation reveals why random (or atypical)
connections between nodes might result in a more sig-
nificant outcome, but only when those nodes are also
embedded in dense clusters.

In several different disciplines (e.g., social net-
works, graph theory, complex adaptive systems,
connectionism), systems are represented as groups of
nodes that are interconnected in some way. These
connections may be any kind of relationship, includ-
ing physical connections (as in the wire between a
string of lights), transaction connections (as in the re-
lationships between buyers and sellers), familial rela-
tionships, the relationships between ideas, and so on.
Each such connection may be referred to as a link.
For example, in a semantic network a node can be
used to represent a single concept or idea that is
linked to other concepts through some association
that may be reinforced or diminished over time
(Fahlman, 1989; Martindale, 1995; Steyvers &
Tenenbaum, 2002). In connectionist models, a net-
work of nodes and links may represent patterns of
communication among actual neurons or, more ab-
stractly, the pattern of links between knowledge ele-
ments that collectively form a concept (Collins &
Loftus, 1975; Gasser & Smith, 1998). Once forged,
links provide a ready path that facilitates and guides
future searches among knowledge elements. For ex-
ample, the activation of a particular knowledge node
(e.g., the concept of “volcano”) might immediately
activate other knowledge nodes associated with it
(e.g., “crater,” “lava,” and “erupt”; Collins & Loftus,
1975; Steyvers & Tenenbaum, 2002).

Such a network approach can be used to depict the
insight examples described previously. Creating sim-
ple network diagrams (similar to semantic network di-
agrams) of the problems and their solutions reveals the
abstract commonalities among the different explana-
tions for insight.
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1. When the men first encounter the dead man, there is no apparent explanation for his death,

creating a gap in the schema.

Man in desert

Has food and Has large pack

water
7

I
Why dead?

Has ring on

2. The falling handkerchief provides an external cue that helps the men to complete the schema

Man in desert

Has food and Has large pack Has ring on
water finger
Parachute, Handkerchief
which broke " falls to ground
Dead

Figure 2. Network diagram for completing a schema example.

Figure 2 depicts the example described for complet-
ing a schema. The first panel shows the walking men’s
initial knowledge of the deceased man: He has food
and water, a large pack, and a large ring on his finger,
but there is no apparent reason for his death. The gap
between what is apparent about the man and his death
results in a disconnected network. The second panel
shows that the external stimulus provided by the hand-
kerchief fluttering to the ground causes the men to
think of a parachute, providing an explanation for the
large pack, the large ring, and creating a path to the
man’s death, thus completing the schema. In this ex-
ample, a node has been added to the network with links
that subsequently connect the network.

Figure 3 depicts the example provided for reorganiz-
ing visual information (or reformulating a problem).
Participants who attempt to complete the representation
in panel A are stumped with how to measure the overlap-
ping portions of the circles and rectangles that compose
the shape. However, the realization of the equivalence of
the protruding and concave portions of the shape creates
aone-to-one mapping of each of the elements in the pro-

trusion and the concave portion of the shape (see Figure
3, second panel). Because one is added to the shape’s
area and the other is subtracted from the shape’s area,
they cancel each other out. The associations between the
elements resolve the problem; no new nodes are
necessary.

In the example on overcoming a mental block,
prompting a participant to consider many varied uses of
an object increases the participant’s likelihood of dis-
covering a solution. Consider the example involving
apes, bananas, and sticks. From a network perspective,
encouraging the ape to explore different functions of a
stick created multiple possible pathways for associa-
tion, increasing the likelihood that it would make an as-
sociation that would successfully solve the problem.
First, the ape discovers multiple attributes of and uses
for a stick, creating the representations depicted in the
first and second panels of Figure 4. When the ape is sub-
sequently given a hoe, the associations between similar
features of the stick and the hoe help the ape to realize
that the hoe can also be used in similar ways as the stick,
creating a series of associations that enables the ape to
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1. Upon presentation of the problem, the subject may recall formulas for calculating the area of
rectangles and circles, but is not sure how to deal with the slight overlap of the circles and the

rectangles.

Area of shape

/\

Rectangle Protrusion Concave portion
Length x : . .
heigé ht Circle Overlappmg Circle Overlapping
portion portion
(Pi x radius)’ 229 (Pi x radius)’ 277

2. After visually reorganizing the shape so that the protruding area fits in the concave area (or

after realizing the equivalence of the two subrepresentations for the protruding portion and

concave portion), it becomes clear that the subject need only calculate the area of the rectangle.

Area of shape

/

Protrusion

Concave portion

Rectangle
h 4 :
Length x : P . :
heigg ht Circle Overlapping Circle Overlapping
portion portion
|

H | | 4
(Pi x radius)’ 277 (Pi x radius)’ 72

Figure 3. Network diagram for reorganizing visual information example.

connectthehoetoreaching the bananas. From anetwork
perspective, both links and nodes have been added.
Studies in which participants are primed with solu-
tion analogs streamline the search process by stimulat-
ing a connection to a specific solution. Recall the ray
and tumor example used to illustrate the finding a
problem analog view of insight. The researchers could
have provided participants objects such as toy guns and
allowed them to experiment with them, thereby en-
couraging them to realize (among other things) that
multiple guns can be shot at the same target from dif-
ferent angles. Instead, the researcher primes the partic-

ipant with a story that yields a specific solution once
the participant has mapped the details of the analog to
the details of the problem at hand. There are a number
of models for how such a mapping process takes place,
but the net effect is the same: The researcher has en-
couraged the participant to make an association be-
tween two knowledge elements that initially seem
quite different (e.g., “army” and “radiation”) but that
are embedded within patterns that share some symme-
tries. This prompts the participant to consider other
possible associations, leading the participant to add
links and nodes that make the representation of the
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1. Upon presentation of the stick, some features are immediately apparent

Wo Hard Long
Stick
2. Playing with the stick reveals a number of uses (dashed lines indicate new associations)
Wo Hard Long
Stick
Scratckﬁng Hitting Pﬁshing
back things things

3. Upon presentation of the hoe and bananas, some features are immediately apparent

Wo Har(‘/ng WOQ\H Vg Yell\&nell‘ty reach
ick Hoe

Stic

Pﬁshing
things

Hitting
things

Scratcl;ing
back

Bananas

4. Recognition of similarity of attributes between stick and hoe results in a number of
connections being made, enabling solution of problem.

Wood Hard Lodg

Wood

H'jlrd Lon;g

Yellow  Smell tasty
Stick H;_)e Bangnas
Scratching Hl_ttlﬂg Pughmg Scratching ~ Hitting Pushing’ Push bananas
back things things back things Bananas? into reach

Figure 4. Network diagram for overcoming a mental block example.

problem and the analog almost identical, and revealing
a solution to the problem (see Figure 5).

Though each example represents a different expla-
nation of insight, in each case the underlying mecha-
nism was fundamentally the same: The addition or
change of nodes, links, or both. This process is not
dissimilar to more typical learning processes that may
involve the forging of new nodes and links; the key
difference is that insightful learning may entail the
forging of nodes or links that result in a more sub-

stantive shift or completion of a representation. The
last view, the role of random recombination, provides
direction as to why some link or node additions
should result in such a substantive shift. If connec-
tions are successfully forged through random recom-
bination (or searching “Klondike” spaces [Perkins,
1995]), such combinations are more likely to be un-
usual or to span long distances. Such connections
bring formerly distant ideas into close proximity, and
simultaneously reorient the individual’s perception of
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1. The subject is presented with a story about a general who divides his army so that they may

travel on narrow roads, and then reconverge at a fortress in sufficient numbers to capture it.

Arm

If too many go at
once, cannot
traverse roads

Can separate
and go on
different roads

If too few go at
a time, cannot
capture fortress

Converge at fortress

Sufficient numbers
to capture fortress

2. The subject is given the radiation problem. Subject may immediately note some similarities.

I o~

If too few go at
a time, cannot
capture fortress

If too many go at
once, cannot
traverse roads

Can separate
and go on
different roads

Converge at fortress

Radiation
High ihtensity Low inténsity
destroys healthy does not destroy
flesh tumor
7?7

Sufficient numbers to
capture fortress

3. Subject solves problem by completing the symmetrical patterns.

Sufficient intensity to
destroy tumor

Arm\
Can separate
and go on

different roads

If too few go at
a time, cannot
capture fortress

If too many go at
once, cannot
traverse roads

Radiation
I
High iriensity Canseparate  Low intensity
destroys healthy and go on does not destroy
flesh multiple paths tumor

Convergeat fortress

Converge at tumor

Sufficient numbers to
capture fortress

Sufficient intensity to
destroy tumor

Figure 5. Network diagram for finding a problem analog example.

distance between other elements in the cognitive net-
work. Thus it is precisely because random recombi-
nation can result in atypical or unexpected connec-
tions between ideas that it may yield dramatic results
(Simonton, 1995). Simonton also noted that the ten-
dency of creative individuals to make such unusual
connections may be what makes them more likely to

discover profound insights. As Simonton stated,
“Those people who make their minds accessible to
chaotic combinatorial play will also make their
senses more open to the influx of fortuitous events in
the outside world. Both the retrieval of material from
memory and the orientation of attention to environ-
mental stimuli are unrestricted ... what appears logi-
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cally irrelevant may actually provide the missing
piece of the puzzle” (1995, pp. 470-473).

In sum, the preceding thus suggests that (a) insight
may be a substantive shift or augmentation of a repre-
sentation due to the addition or changing of either
nodes (elements of information, or sets of information)
or links (connections or relationships between nodes of
information); (b) such a shift may often be the result of
forging connections along a path that the individual
perceives as atypical; and (c) the perceived signifi-
cance or magnitude of the shift may be a function of
both the unexpectedness of the connection, and the
magnitude of change it creates in the network of repre-
sentations. Integrating the preceding arguments with
recent findings in graph theory on small-world net-
work properties reveals why some connections result
in a disproportionate payoff, yielding an explicit struc-
tural mechanism for insight.

Insight as the Formation of Small-World
Network Properties

Graph theorists have demonstrated that particular
network structures exhibit some surprising connectiv-
ity properties. As Watts and Strogatz (1998) demon-
strated, a few random or long-spanning links in a
densely clustered network dramatically decrease the
network’s average path length while having negligible
impact on its clustering coefficient. Small-world prop-
erties were first discovered in social networks but sci-
entists soon realized they had profound implications
for the dynamics of many kinds of networks, from the
U.S. electrical grid to semantic networks.

Small Worlds in Social Networks

Small-world analysis has its roots in work by math-
ematical graph theorists (e.g., Erdos & Renyi, 1959;
Solomonoff & Rapoport, 1951), but research specifi-
cally on the small-world phenomenon did not com-
mence until the 1960s, when de Sola Pool and Kochen
(1978) estimated both the average number of acquain-
tances that people possess and the probability of two
randomly selected members of a society being linked
by a chain of no more than two acquaintances. At
around the same time, psychologist Stanley Milgram
was conducting an innovative empirical test of the
small-world hypothesis (1967).

Milgram addressed a number of letters to a friend in
Boston who was a stockbroker. He then distributed
these letters to a random selection of people in Ne-
braska. He instructed the individuals to pass the letters
to the addressee by sending them to a person they knew
on a first-name basis who seemed in some way closer
(socially, geographically, etc.) to the stockbroker. This
person would then do the same, until the letters reached
their final destination. Many of the letters did eventu-
ally reach the stockbroker, and Milgram found that on
average the letters had passed through about six indi-
viduals en route. Milgram had demonstrated that the
world was indeed small, and this finding was dubbed
“six degrees of separation” (Guare, 1990).

If links in social networks were formed randomly,
we would expect short average path lengths even in
sparse networks (Bollobas, 1985): If every person has z
acquaintances, and every acquaintance also has z ac-
quaintances, the number of people an individual can
reach multiplies very quickly with the number of ac-
quaintances they have and the number of steps taken.
The number of degrees of separation increases only
logarithmically with the size of the network, causing
the average path length to be very small even for very
large networks. Similarly, if a single (or few) central
nodes connected to every other node in the network, it
would again be expected that every pair of nodes would
be connected by a relatively short path length through
this central vertex. Finally, if the number of links rela-
tive to the number of nodes were large, we would ex-
pect very short path lengths. As the number of links per
node approaches the number of nodes in the network
(i.e., maximum density), it becomes possible for every
node to be directly connected (i.e., path length of one)
to every other node.

However, social networks are not random. Instead,
they are highly clustered, with many local areas exhib-
iting significant redundance in links. Furthermore, so-
cial networks are (with some exceptions) decentralized
and extremely sparse. The maximum number of ac-
quaintances an individual has is a tiny fraction of the
entire population (Watts, 1999). Intuitively, such clus-
tered networks should require a long path to connect
individual nodes in different clusters with one another
due to the sparseness of connections between clusters.
Thus intuition suggests that sparse and clustered net-
works would tend to be “large worlds” in that the aver-
age path length required to connect any two randomly
chosen nodes is quite large. What made the findings of
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a) Connected Caveman

b) Connected caveman with

¢) Random growth network

three randomly rewired links

25 nodes, degree of 4
Average path length: 5
Clustering coefficient: .75

25 nodes, average degree of 4
Average path length: 3.28
Clustering coefficient: .66

25 nodes, average degree of 4
Average path length: 2.51
Clustering coefficient: .21

Figure 6. Connectivity properties of “Connected Caveman” and random networks.

small-world network research so surprising is that, de-
spite such clustering, decentralization, and sparsity,
many real-world networks demonstrate remarkably
short path lengths. In their pivotal 1998 article, Watts
and Strogatz demonstrated how this can occur: As a
few random or long-spanning connections are added to
a highly clustered network, the path length drops much
more quickly than the clustering coefficient. Thus in
the range between highly structured networks and ran-
dom networks, there is an interval in which high clus-
tering and short path lengths can coexist.

To better understand this, consider two extreme
cases. The first is a network that consists of numerous
highly clustered cliques that are connected to each
other with only one link. Such a network is both highly
clustered and extremely sparse. Watts (1999) referred
to such a network as a “connected caveman graph” and
argues that it is an appropriate benchmark for a large,
clustered graph (see Figure 6, panel a). The contrasting
case is a random graph, which exhibits minimal clus-
tering and represents a good approximation for a net-
work with minimal average path length (see Figure 6,
panel c). Consistent with the aforementioned intuition,
the connected caveman network has a very large aver-
age path length when compared with the random
graph. The world is quite large in this scenario. How-
ever, highly clustered and globally sparse networks
need not be large worlds. Watts and Strogatz (1998)
demonstrated, that by randomly “rewiring” a very
small percentage of links in the highly clustered graph,
the network exhibits the small-world properties of high
clustering and short average path length. Because
nodes that are initially widely separated in the network
are as likely to become connected as those that are near

neighbors, the network contracts as ties within clusters
are replaced with ties that span them (Kogut & Walker,
2001; Watts, 1999). In Figure 6, replacing three of the
links in panel a with randomly generated links de-
creases the path length 34%, from 5 to 3.28, whereas
its clustering coefficient decreases by only 12%, from
.75 to .66 (see Figure 6, panel b).

Numerous studies have examined variations of this
model in a wide range of empirical contexts. Though
Watts and Strogatz (1998) initially used computer
simulations to demonstrate the implications of
small-world structures, they then replicated these re-
sults with data on the physical structure of networks
as diverse as the neural pathways of the worm C.
elegans, and the electrical power grid of the United
States (Watts, 1999). Barabasi (2002) similarly
showed that the pathways formed by hyperlinks on
the Internet demonstrate small-world properties that
are formed through the creation of “hubs” (i.e., some
sites play a disproportionate role in the overall con-
nectivity of the Internet, and cause its average path
length to be quite short given its size).2 Social net-
work theorists have also demonstrated small-world

2The presence of such “hubs” in the network not only give it
small-world properties, but also make it scale free. Scale-free net-
works are those in which the distribution of the number of links per
node conforms to a power law. There is no “characteristic” (or typi-
cal) number of links per node, and there may be some nodes that have
extremely high numbers of links. Though research has indicated that
many networks demonstrate scale-free properties (Barabasi, 2002;
Gladwell, 2000; Steyvers & Tenenbaum, 2002), other networks are
not amenable to the scale-free structure (many knowledge networks,
for instance, might be composed of nodes that are inherently con-
strained in the number of links they can support). Thus I emphasize
the more general small-world network properties here.
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properties in the network of associations formed by
interlocking boards of directors (Kogut & Walker,
2001), Broadway musical actors and producers (Uzzi,
2004), and new product development teams within
firms (Hansen, 2002). Management scholars have
also showed that the alliance networks formed by in-
dustrial firms often demonstrate small-world proper-
ties, and that these properties are significantly related
to knowledge flow through the network and subse-
quent innovation rates (Schilling & Phelps, 2004).
Recently, Steyvers and Tenenbaum (2002) showed
that semantic networks constructed from (a) word as-
sociation tests, (b) WordNet, and (c) Roget’s Thesau-
rus each demonstrate small-world connectivity. All
three networks were very sparse and displayed aver-
age path lengths that were very short for the size of
the networks (3.04 for the 5,018 words in the associa-
tion test, 5.6 for the 29,381 words in Roget’s Thesau-
rus, and 10.56 for the 122,005 words in WordNet).

The structural properties of small-world networks
have significant implications for network dynamics.
Watts (1999) demonstrates how the topology of a
small-world network affects the degree to which a con-
tagion (e.g., information, fashion, disease) diffuses
throughout the network and the rate at which this diffu-
sion occurs. Watts’s simulation results demonstrate
that a contagion can spread completely and far more
rapidly in a small-world network than in a large world
and nearly as fast as in a random network. A few links
that span clusters decrease the average path length and
dramatically increase the rate of diffusion. Yamaguchi
(1994) obtained similar results in his examination of
the rate of information diffusion in alternative network
structures. Using simulations of a broad array of net-
work structures, Yamaguchi found a strong negative
relationship between the diameter of a network and its
rate of information diffusion.?

Small Worlds in Cognitive Networks

Like social networks, cognitive networks demon-
strate significant clustering and sparsity. The knowl-
edge elements in the mind (including both ideas and

3The diameter of a graph is the length of the largest geodesic (i.e.,
shortest path between two nodes) between any two nodes in the
graph. Both scale similarly with the addition of nodes to the graph
since average path length is strictly less than or equal to diameter
(Newman, 2000).

concepts) are not randomly connected to one another,
but rather are highly structured (Anderson & Hinton,
1989; Steyvers & Tenenbaum, 2002). Although not all
ideas are as broad and abstract as concepts, both are in-
formation within a network of associations that give
them meaning. Ideas or concepts tend to be associated
with a probability that is some function of their similar-
ity on one or more dimensions (sometimes termed “‘se-
mantic distance” or “semantic relatedness’; Collins &
Loftus, 1975; Rips, Shoben, & Smith, 1973). Associa-
tion based on similarity results in significant cluster-
ing. Further, such networks are likely to be sparse.
Forging and maintaining links between concepts in the
mind has a cost in terms of time and effort (Simon,
1955), and links that are not reinforced over time can
diminish (Martindale, 1995). These costs make it diffi-
cult (if not impossible) to densely connect every possi-
ble node in the network to every other node; instead
cognitive networks are likely to be characterized by
dense connectivity among closely related nodes, and
much sparser connectivity (if any) between nodes that
are only distantly related.

Though such order and clustering is extremely valu-
able in terms of giving structure and meaning to indi-
vidual knowledge nodes and sets of knowledge nodes
(Bartlett, 1932; Mayer & Greeno, 1972), it also results
in relatively long path lengths in the network. Long
path lengths make it more difficult and time consuming
for individuals to search their cognitive networks and
may make individuals less likely to find a solution that
is not in the immediate domain of the problem. An
atypical path in the network, however, can create a
shortcut that brings many more nodes in the network
within easy search range. This process is demonstrated
below.

In Figure 7a, a line lattice is used to model a cogni-
tive network that grows in a highly ordered fashion,
whereby as each node is added to the network, it is con-
nected to its four nearest neighbors. The path length of
this network at each step of growth is shown in the ac-
companying graph. A network that grows in random
fashion is also shown (Figure 7b), modeled by a line
lattice in which each node is connected randomly to
four other nodes. The average path length of this net-
work grows much more slowly, as also indicated in the
graph. By the addition of the 50th node in the struc-
tured line lattice, the average minimum distance be-
tween every possible pair of nodes is 8.58 links; in the
random line lattice it is only 2.96 links. As already dis-
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a) Line lattice with ordered growth, z = 4

b) Line lattice with random growth, z = 4

¢) Line lattice with ordered growth except for one random link, z = 4

d) Graph of average minimum path lengths for the ordered line lattice, the random line lattice,
and ordered lattice with one random link (for visual clarity, overlapping portions of lines have

been slightly offset)

Ordered lattice
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Figure 7. Alternative models of knowledge network growth—ordered versus random.

cussed, such random association is a poor model of
cognition; ideas that are associated randomly would
have little (if any) meaning. However, there is an at-
tractive compromise to be struck. Substituting only a
very few random or atypical links into the structured
line lattice causes, on average, a significant decrease in
the average path length.

Figure 7c shows a line lattice of 50 nodes in which
only one link has been rewired randomly, and the associ-
ated change this causes in the growth of the path length.
The graph shows the significant drop in path length that

occurs at the step in which a node is added that has one
random connection (both the choice of originating node
and the node to which it is connected were generated
randomly—in this case, the random connection oc-
curred at the addition of the 40th node). Although very
little of the clustering structure of the line lattice has
been forfeited, the connectivity gains are substantial.
Adding the random connection at the 40th node de-
creases the path length at that step from 6.92t0 5.70. By
the 50th node, the path length has only reached 5.82 ver-
sus the 8.58 length of the purely ordered lattice.
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If association networks are sparse, and search is
constrained or costly (as is suggested by considerable
research; see for example, Collins & Loftus, 1975;
Collins & Quillian, 1969; Martindale, 1995; Simon,
1955), these results suggest that random or atypical
connections can have a disproportionate payoff in
terms of an individual’s ability to search and access the
network. Further, as shown in the graph in Figure 8, the
decrease in path length created by a random or atypical
path is not reaped gradually; rather it is a sudden and
sharp drop—explaining why the moment of success-
fully forging such a connection “feels” so different
from incremental learning processes.

Applying small-world network principles to the
realm of cognitive networks thus provides a compel-
ling explanation for insight. The quantum leap of un-
derstanding that occurs during insight, and the affec-
tive response it produces, may be due to the formation
of a new small-world network of interconnected repre-
sentations: One unlikely combination between two
seemingly distant knowledge clusters suddenly results
in a much shorter path length between a large web of
connected representations. Furthermore, the dramatic
decrease in path length between the two representa-
tions may prompt the individual to search for and note
other similarities. Relationships that had never been
previously considered may suddenly seem obvious,
causing the rapid formation of new links between the
representations without any prompting from external
input. Consistent with this, recent work has demon-
strated that insight can be graph theoretically verified
as a restructuring that occurs when individuals note
similarity between concepts that had previously ap-
peared unrelated (Durso, Rea, & Dayton, 1994).
Small-world network properties illuminate why such a
restructuring is so different from incremental learning
processes. The following example illustrates this pro-
cess, while simultaneously integrating each of the
views of insight described previously, demonstrating
that they can be seen as complementary pieces of the
same puzzle.

Example of Insight as the Formation of a
Small World in a Semantic Network

Suppose a young child has a set of mental represen-
tations for dogs, cats, and humans as in Figure 8, panel
a. Dogs and cats are in a category for “animals,” sepa-

rate from the category for humans.* Though humans
share some similarities with dogs and cats (e.g., “two
eyes”), the child considers the two categories to be
quite different. One marked difference concerns legs:
dogs and cats have four legs, whereas humans have
only two legs. Humans also have arms. Though the
child may have considered the possibility that arms are
analogous to the front legs of dogs and cats, this possi-
bility does not seem very likely for a number of rea-
sons. First, a human’s arms are much shorter than its
legs, making walking on all fours very awkward—the
child has verified this with their own experience! Sec-
ond, the joint that appears to be midway down a dog or
cat’s front limbs permits the bottom portion of the limb
to bend backward, while the joint midway down their
hind limbs permit the bottom portion to bend forward.
Thus dogs and cats appear to have knees where a hu-
man’s elbow would be, and elbows where a human’s
knees would be (see Figure 8, panel b). Third, the num-
ber of digits further differentiates the arms and legs of a
human from the legs of dogs and cats. Whereas hu-
mans have five fingers on each hand (including the op-
posable thumb, which children are often taught is spe-
cific to humans) and five toes on each foot, dogs and
cats appear to have only four toes on each foot.

One day, however, while tickling the family dog’s
feet, the child discovers a small fifth toe, previously
overlooked, on each of the dog’s front legs. A quick in-
spection of the cat reveals fifth toes there too. This dis-
covery might spur a series of connections in the child’
mind, whereby the child begins to relate the dog’s front
legs to either human’s legs or hands (see Figure 8§,
panel c). Looking at where the toe emerges on the
dog’s leg starts a restructuring of the child’s under-
standing of the dog’s skeleton: The toe emerges just be-
low the joint that was considered by the child to be a
knee, thus prompting the child to realize that perhaps
that joint is actually more analogous to the human’s
wrist. Following the dog’s leg up toward the shoulder
reveals that, just before the shoulder, the dog has a
knobby structure very akin to an elbow, permitting the
rest of the leg to bend upward (Figure 9, panel a). In a
series of quick realizations, the child equates what had
been considered an elbow on the dog’s hind limbs to

4This illustration uses an undirected hierarchical semantic net-
work but the concepts would apply equally well to other network
forms.
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Panel a: A child's semantic network for animals and humans (simplified)

Ammals

Two eyes

Four legs

Four toes
each foot

Panel b: Bending angles of dogs' legs

Panel c: Restructuring of representations

Animals
Ca Dog
Furry Four legs Two eyes
Five toes

each foot

Two arms Two legs No fur
Five fingers Five toes
each hand each foot
Humans
Two arms Two legs No fur
Five Five toes
fingers each foot

each hand

Figure 8. A semantic network example of a cognitive insight.

actually be the heel, and the round portion at the top of
the dog’s leg near the flank as a knee, and everything
makes sense: Human arms and legs are roughly the
same as dog legs, and dogs essentially walk on their
fingertips and their toes. Such a realization is exciting!
The child might even speculate that the bottom portion

of dog and cat limbs is composed of several bones, like
the human hand or foot (the child would be correct; the
bottom portion of dog and cat limbs are composed of
four metacarpals in the front limb, and metatarsals in
the back limbs). The child’s mind begins to restructure
the representations for animals and humans. Whereas
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Panel a: Child's new understanding of bending angle of dogs' legs

Animals Humans
Cat Dog
Furry Four limbs Two eyes No fur?
Five digits
Panel c: Metarepresentation including humans and animals
Animals
Cat Dog Humans

Furry Two eyes Four limbs

Five digits

Figure 9. Semantic network example, continued.

previously the representations of humans and animals
had been quite separate, they now become much more
integrated (see Figure 9, panel b), causing the child to
spontaneously form (or search for) other associations.
For example, the child may suddenly consider the fur
of the dog to be roughly the same as the fine hair cover-

ing the human body. The single relationship between
the number of toes has, in a matter of moments, en-
abled the child to form multiple links between the rep-
resentations, including one for which the child has no
readily observable evidence (the bottom portion of the
dog’s limb being composed of several bones). The
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child might even come to the conclusion that humans
belong in the category of animals, thus creating a sin-
gle metarepresentation as in Figure 9, panel c.

Describing this event in traditional insight terms
demonstrates that any of the alternative views of in-
sight discussed at the beginning of the article could
have been used to describe the insight. The representa-
tions for animals and humans already shared common
fringe elements (e.g., two eyes), but features such as
the seemingly incongruent bending direction of the
joints and apparent difference in number of digits had
served as inappropriate cues, causing a recognition
failure (mental block). The accidental discovery of the
fifth toe (random recombination with external stimuli)
forges a connection between dog paws and human feet
and hands, resulting in a cascade of node and link
changes. The presence of five toes rather than four and
the position of the fifth toe suggests that the joint just
above it is analogous to the human wrist (finding a
problem analog). This both reorganizes the child’s un-
derstanding of the dog’s feet and legs (reorganizing vi-
sual information or reformulating a problem) and may
prompt the recognition of other relationships between
dogs and humans, ultimately resulting in combining
the two representations (combining existing represen-
tations to complete a schema). Finding a fifth toe on the
dog and the concomitant pattern of symmetry between
dogs and humans was unexpected. The resulting re-
structuring event was of significant magnitude, in part,
because the child was able to forge connections among
a number of other elements in the two representations.
The number of nodes and links affected by the restruc-
turing was thus to some degree a function of how ex-
tensive the child’s representations for humans and dogs
were, indicating the importance of knowledge reser-
VOIrS.

It is much simpler to describe the event in graph the-
ory terms: The average path length of the semantic net-
work decreased from 2.74 to 1.90. The distance be-
tween any element in the child’s representation for
dogs and any element in the child’s representation for
humans has been significantly decreased. Taxo-
nomically speaking, the world has gotten smaller.

A graph theoretical approach can also be used to
analyze semantic network diagrams of known insight
problems (Durso, Rea, & Dayton, 1994). The net-
work statistics of the simple network diagrams used
to illustrate the insight problems discussed previously
indicate that their connectivity properties are consis-

tent with small-world network results (see Figure
10).> For each of the network diagrams, the number
of nodes and the average path lengths are calculated
for each step, and the average path lengths are
graphed. For visual clarity, the starting point of each
graph has been set at one node and zero path length.
Disconnected graphs are mathematically considered
to have an infinite path length, but for graphical pur-
poses the maximum average path length here is set at
20 (much higher than the average path lengths of any
of the connected graphs). Though the network dia-
grams undoubtedly oversimplify the learner’s repre-
sentations of the problem and solution, each graph
shows the characteristic drop in average path length
of the network at the point of solution.

Random Recombination Versus Search

It is clear how the random recombination process
described by Simonton (1995, 1999a, 1999b) or a ran-
dom encounter with an external cue as discussed by
Siefert et al. (1995) might result in the forging of an
atypical path through a cognitive network. It is also
possible, however, for such atypical paths to be discov-
ered through a search process. Much of the emerging
work on both recombinant search and graph networks
invokes an assumption that the network is “search-
able.” That is, agents in a network do not blindly go
down every possible path between any random set of
nodes, but rather may intelligently seek out paths that
appear more likely than others. Watts, Dodds, and
Newman (2002) modeled searchable networks by cre-
ating identity vectors for each node that represent sets
of characteristics measured along a number of dimen-
sions. In their model, individuals form a measure of
“social distance” by identifying the minimum distance
between any two nodes over all possible social dimen-
sions. Identity vectors may be what enable individuals
to identify a “specific but distant target person” in a re-
markably few number of steps. Similarly, it is likely
that individuals often arrive at insightful solutions not
through a truly random recombination process, but
through a process that involves search through their
cognitive network (Baughman & Mumford, 1995;
Mumford, Baughman, Maher, Costanza, & Supinski,
1997). The associations linked to a knowledge node

SThese graphs are representations of actual insight problems;
they are not generated with algorithms.
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Insight Problems

Man with parachute problem

Step 1. Nodes: 5, Average path length: Infinite

Step 2. Nodes: 6, Average path length: 1.87

Area of shape problem
Step 1. Nodes: 11, Average path length: 2.83

Step 2. Nodes: 11, Average path length: 2.36

Hoe and banana problem
Step 1. Nodes: 4, Average path length: 1.5

Step 2. Nodes: 8, Average path length: 2.07

Step 3. Nodes: 16, Average path length: Infinite

Step 4. Nodes: 21, Average path length: 3.2

Radiation problem
Step 1. Nodes: 6, Average path length: 2.13
Step 2. Nodes: 10, Average path length: 2.733

Step 3. Nodes: 12, Average path length: 2.49

Graph of Path Length
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Figure 10. Network statistics for insight problem diagrams.

may create an identity map wherein associations serve
as identifying features of varying salience. The cogni-
tive network of associations thus may both guide, and
be a product of, search.

Search might take place consciously or subcon-
sciously (Siegler, 2000). If the path to a solution is not

immediately apparent, the individual may begin to cast
a wider net (Perkins, 1981, 1995). Priming (Birch,
1945), analogical solutions (Holyoak, 1984), or ran-
dom encounters with external stimuli (Siefert et al.,
1995), might encourage search in a particular direc-
tion, or increase the salience of identifying features
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that might otherwise be overlooked. Though the initial
search may have required pursuing a long path through
the network, once a successful combination is made
and mentally verified, the point of origination of the
search and its final destination may be linked by a very
short path, bringing not only these elements much
closer together in the network, but also their respective
neighborhoods of elements. This explains both why
having significant reservoirs of knowledge matters
(because shortcuts will bring larger and denser clusters
of knowledge together) and why one combination be-
tween two knowledge domains may stimulate a cas-
cade of other connections (because many other nodes
are now within a relatively close reach of each other).

In sum, I propose that (a) cognitive insight occurs
when an atypical association results in a “shortcut” in
an individual’s network of representations, (i) causing
a rapid and significant decrease in path length, (ii) re-
orienting the individual’s understanding of the rela-
tionships within and among the affected representa-
tions, and (iii) possibly prompting a cascade of other
connections; (b) This atypical path may be forged
through a random recombination process (Campbell,
1960; Simonton, 1988) or through subconscious or
conscious directed search (Baughman & Mumford,
1995; Mumford et al., 1997; Rips, Shoben, & Smith,
1973); and (c) The magnitude of the affective response
is a function of (i) the unexpectedness of the connec-
tion and (ii) the size and density of the clusters that are
brought into closer proximity.

This small-world network approach elucidates how
insight is both similar to, and different from, more in-
cremental learning processes. Insight may occur
through the same search process that is used in typical
problem solving, and both insight and more incremen-
tal learning processes may entail adding or changing
nodes and their associations in the cognitive network.
However, whereas regular learning processes involve
the incremental creation, expansion, or refinement of
representation networks in a progression that is consis-
tent with (or at least not inconsistent with) the individ-
ual’s perception of the relatedness of the ideas, in-
sight’s more revolutionary nature is due to the
atypicality of the resulting connection and the reorien-
tation of the network it inspires. This small-world net-
work approach to insight thus offers an explicit struc-
tural mechanism underlying insight that (a) integrates
previous views of insight, (b) is consistent with emerg-

ing theories of insight as the forging of random
connections, and (c) is a mathematically verifiable
property that can be used to distinguish insightful
learning from more incremental learning.

Implications and Extensions

The relevance of small-world connectivity proper-
ties should be immediately apparent to scientists that
use network models of cognition. As described previ-
ously, work has already begun to emerge on how se-
mantic networks might demonstrate small-world
properties  (Steyvers &  Tenenbaum, 2002).
Connectionist network models should also be amena-
ble to exploring the impact of small-world connectiv-
ity. Connectionist models are slightly more complex
than semantic networks; however, the two approaches
can be reconciled by considering semantic networks a
simplified version of a connectionist model wherein
concepts in the semantic network represent “meaning
modules” in the connectionist models (Masson, 1991,
1995; Sharkey, 1990).6 Though I do not know of any
research that has begun to explore the possibility of
small-world connectivity properties in connectionist
models, it is likely that this work will begin to emerge
in the very near future.

Why Some People Might Be More Insightful
Than Others

This explanation of insight also suggests explana-
tions for why some individuals appear to be more in-
sightful than others. First, individuals may vary in
their search proclivities and capabilities. Some indi-
viduals may be more likely to consider many possible
search paths from a problem (Guilford, 1950, 1967,
Khandwalla, 1993; Runco, 1991), increasing their

%In connectionist models, concepts are represented by a pattern
of activation over the network rather than as a single node
(McClelland & Rumelhart, 1986; Medin & Ross, 1992). The con-
nections between units are weighted in such a way that they deter-
mine how much influence the activation of one unit has on another.
Units that tend to occur together will activate each other, and units
that rarely occur together will inhibit each other. McClelland
Rumelhart refer to these sets of units as modules. As an individual
learns, the weights between units may be adjusted, causing a stimu-
lus to prompt the activation of a modified set of units.
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likelihood of identifying a novel solution. This is con-
sistent with early work by Mednick (1962) that sug-
gested that some individuals may have a relatively
flat associative hierarchy, meaning that for any given
stimulus there are a great many associations that are
available. Some individuals may also be more likely
or more capable of searching longer paths through
their cognitive networks, enabling them to reach
more remote associations. For example, some indi-
viduals may tend to experience higher states of cogni-
tive arousal, enabling typical spreading activation
processes to reach an atypically wide range of con-
nections (Collins & Loftus, 1975; Martindale, 1995).
Both of these possibilities are consistent with evi-
dence suggesting that creative people tend to prefer to
think in novel ways of their own choosing, tend to be
persistent, and tend to be highly motivated by the in-
trinsic reward of working on a problem they find in-
teresting (Amabile, 1983, 1996; Sternberg & Lubart,
1999).

Second, some individuals might intuitively incor-
porate a degree of randomness into their association
processes that increases their likelihood of insightful
discovery. The theory here suggests that there may be
some optimum combination of orderly clustering and
randomness of association individuals should use if
they desire to make insightful discoveries. This ech-
oes and extends the views put forth by Simonton
(1995), Cannon (1940), and others: Not only does in-
troducing some randomness into the information con-
nection process increase the likelihood of insightful
discovery, but there may also be both upper and lower
bounds on the ideal amount of randomness for in-
sightful discovery. In pursuit of an insightful solution,
an individual should avoid both being too ordered
and being too random. This is consistent with find-
ings that great discoveries are most often discovered
by scientists that have considerable expertise in a
given area, but who are also thought of as mavericks
that do the unexpected (Price, 1963). Either explana-
tion, unusual search abilities or incorporating random
recombination, is consistent with a considerable body
of research suggesting that the most insightful indi-
viduals tend to demonstrate exceptional intellectual
versatility and an insatiable curiosity about fields of
knowledge outside of their particular specialty
(Raskin, 1936; Root-Bernstein, 1995; Simonton,
1976; White, 1931) and that those individuals most

prolific in the production of insights commonly en-
gage in many varied projects simultaneously, which
evolve into a network of loosely connected enter-
prises (Gruber, 1989).7

Third, some individuals may be more flexible in
their ability to reorganize a set of connections in their
cognitive network in response to recognition of a new
relationship (Guilford, 1950; Lubart, 2000-2001;
Baughman & Mumford, 1995; Wicker, Weinstein,
Yelich, & Brooks, 1978). To reap the connectivity ben-
efits of an atypical association carving a shortcut
through a cognitive network, individuals must be able
(and willing) to revise their existing patterns of associ-
ation. Thus to overcome functional fixedness, individ-
uals must not only be able to consider atypical search
paths or random recombination, but must also be able
to restructure their network in response to forging a
successful combination.

These multiple causal paths to the moment of in-
sight do not imply that insight is poorly de-
fined—rather, from a graph theory perspective, these
paths are equifinal. This theory readily lends itself to
developing very precise measures of the moment of in-
sight, and even the degree of insight. Should empirical
studies verify that insight is the creation of a new
small-world network in the mind, we will have reached
the verification stage of our own insight: One unlikely
connection between cognitive psychology and graph
theory may yield a profoundly new understanding of
insight and stimulate the recognition of many other
possible connections to be made.
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